Integrative epigenomic mapping defines four major chromatin states in Arabidopsis
نویسندگان
چکیده
François Roudier, Ikhlak Ahmed, Caroline Bérard, Alexis Sarazin, Tristan Mary-Huard, Sandra Cortijo, Daniel Bouyer, Erwann Caillieux, Evelyne Duvernois-Berthet, Liza Al-Shikhley, Laurène Giraut, Barbara Després, Stéphanie Drevensek, Frédy Barneche, Sandra Dèrozier, Véronique Brunaud, Sébastien Aubourg, Arp Schnittger, Chris Bowler, Marie-Laure Martin-Magniette, Stéphane Robin, Michel Caboche and Vincent Colot
منابع مشابه
Integrative epigenomic mapping defines four main chromatin states in Arabidopsis
Post-translational modification of histones and DNA methylation are important components of chromatin-level control of genome activity in eukaryotes. However, principles governing the combinatorial association of chromatin marks along the genome remain poorly understood. Here, we have generated epigenomic maps for eight histone modifications (H3K4me2 and 3, H3K27me1 and 2, H3K36me3, H3K56ac, H4...
متن کاملPCSD: a plant chromatin state database
Genome-wide maps of chromatin states have become a powerful representation of genome annotation and regulatory activity. We collected public and in-house plant epigenomic data sets and applied a Hidden Markov Model to define chromatin states, which included 290 553 (36 chromatin states), 831 235 (38 chromatin states) and 3 936 844 (26 chromatin states) segments across the whole genome of Arabid...
متن کاملEpigenetic Regulation of the Cardiovascular System: Introduction to a Review Series Epigenome Mapping in Normal and Disease States Epigenetic Reprogramming for Cardiovascular Regeneration Chromatin Remodeling in Cardiovascular Development and Physiology
Epigenomes are comprised, in part, of all genome-wide chromatin modifications, including DNA methylation and histone modifications. Unlike the genome, epigenomes are dynamic during development and differentiation to establish and maintain cell type–specific gene expression states that underlie cellular identity and function. Chromatin modifications are particularly labile, providing a mechanism...
متن کاملEpigenome mapping in normal and disease States.
Epigenomes are comprised, in part, of all genome-wide chromatin modifications, including DNA methylation and histone modifications. Unlike the genome, epigenomes are dynamic during development and differentiation to establish and maintain cell type-specific gene expression states that underlie cellular identity and function. Chromatin modifications are particularly labile, providing a mechanism...
متن کاملThe Functional Topography of the Arabidopsis Genome Is Organized in a Reduced Number of Linear Motifs of Chromatin States.
Chromatin is of major relevance for gene expression, cell division, and differentiation. Here, we determined the landscape of Arabidopsis thaliana chromatin states using 16 features, including DNA sequence, CG methylation, histone variants, and modifications. The combinatorial complexity of chromatin can be reduced to nine states that describe chromatin with high resolution and robustness. Each...
متن کامل